direct product, metabelian, supersoluble, monomial, A-group
Aliases: S32×C2×C6, C62⋊30D6, C33⋊2C24, C62⋊13(C2×C6), (S3×C62)⋊10C2, C32⋊2(C23×C6), C32⋊7(S3×C23), (C32×C6)⋊2C23, (S3×C32)⋊2C23, (C3×C62)⋊10C22, C6⋊1(S3×C2×C6), (S3×C2×C6)⋊9C6, C3⋊1(S3×C22×C6), (C2×C6)⋊11(S3×C6), (C3×S3)⋊(C22×C6), (S3×C6)⋊10(C2×C6), C3⋊S3⋊2(C22×C6), (C3×C3⋊S3)⋊2C23, (S3×C3×C6)⋊24C22, (C3×C6)⋊7(C22×S3), (C3×C6)⋊2(C22×C6), (C22×C3⋊S3)⋊13C6, (C6×C3⋊S3)⋊24C22, (C2×C6×C3⋊S3)⋊11C2, (C2×C3⋊S3)⋊12(C2×C6), SmallGroup(432,767)
Series: Derived ►Chief ►Lower central ►Upper central
C32 — S32×C2×C6 |
Generators and relations for S32×C2×C6
G = < a,b,c,d,e,f | a2=b6=c3=d2=e3=f2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, dcd=c-1, ce=ec, cf=fc, de=ed, df=fd, fef=e-1 >
Subgroups: 2080 in 642 conjugacy classes, 208 normal (12 characteristic)
C1, C2, C2, C3, C3, C3, C22, C22, S3, S3, C6, C6, C23, C32, C32, C32, D6, D6, C2×C6, C2×C6, C2×C6, C24, C3×S3, C3×S3, C3⋊S3, C3×C6, C3×C6, C22×S3, C22×S3, C22×C6, C33, S32, S3×C6, S3×C6, C2×C3⋊S3, C62, C62, C62, S3×C23, C23×C6, S3×C32, C3×C3⋊S3, C32×C6, C2×S32, S3×C2×C6, S3×C2×C6, C22×C3⋊S3, C2×C62, C3×S32, S3×C3×C6, C6×C3⋊S3, C3×C62, C22×S32, S3×C22×C6, S32×C6, S3×C62, C2×C6×C3⋊S3, S32×C2×C6
Quotients: C1, C2, C3, C22, S3, C6, C23, D6, C2×C6, C24, C3×S3, C22×S3, C22×C6, S32, S3×C6, S3×C23, C23×C6, C2×S32, S3×C2×C6, C3×S32, C22×S32, S3×C22×C6, S32×C6, S32×C2×C6
(1 11)(2 12)(3 7)(4 8)(5 9)(6 10)(13 19)(14 20)(15 21)(16 22)(17 23)(18 24)(25 31)(26 32)(27 33)(28 34)(29 35)(30 36)(37 43)(38 44)(39 45)(40 46)(41 47)(42 48)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 5 3)(2 6 4)(7 11 9)(8 12 10)(13 15 17)(14 16 18)(19 21 23)(20 22 24)(25 29 27)(26 30 28)(31 35 33)(32 36 34)(37 39 41)(38 40 42)(43 45 47)(44 46 48)
(1 23)(2 24)(3 19)(4 20)(5 21)(6 22)(7 13)(8 14)(9 15)(10 16)(11 17)(12 18)(25 43)(26 44)(27 45)(28 46)(29 47)(30 48)(31 37)(32 38)(33 39)(34 40)(35 41)(36 42)
(1 3 5)(2 4 6)(7 9 11)(8 10 12)(13 15 17)(14 16 18)(19 21 23)(20 22 24)(25 29 27)(26 30 28)(31 35 33)(32 36 34)(37 41 39)(38 42 40)(43 47 45)(44 48 46)
(1 32)(2 33)(3 34)(4 35)(5 36)(6 31)(7 28)(8 29)(9 30)(10 25)(11 26)(12 27)(13 46)(14 47)(15 48)(16 43)(17 44)(18 45)(19 40)(20 41)(21 42)(22 37)(23 38)(24 39)
G:=sub<Sym(48)| (1,11)(2,12)(3,7)(4,8)(5,9)(6,10)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,5,3)(2,6,4)(7,11,9)(8,12,10)(13,15,17)(14,16,18)(19,21,23)(20,22,24)(25,29,27)(26,30,28)(31,35,33)(32,36,34)(37,39,41)(38,40,42)(43,45,47)(44,46,48), (1,23)(2,24)(3,19)(4,20)(5,21)(6,22)(7,13)(8,14)(9,15)(10,16)(11,17)(12,18)(25,43)(26,44)(27,45)(28,46)(29,47)(30,48)(31,37)(32,38)(33,39)(34,40)(35,41)(36,42), (1,3,5)(2,4,6)(7,9,11)(8,10,12)(13,15,17)(14,16,18)(19,21,23)(20,22,24)(25,29,27)(26,30,28)(31,35,33)(32,36,34)(37,41,39)(38,42,40)(43,47,45)(44,48,46), (1,32)(2,33)(3,34)(4,35)(5,36)(6,31)(7,28)(8,29)(9,30)(10,25)(11,26)(12,27)(13,46)(14,47)(15,48)(16,43)(17,44)(18,45)(19,40)(20,41)(21,42)(22,37)(23,38)(24,39)>;
G:=Group( (1,11)(2,12)(3,7)(4,8)(5,9)(6,10)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,5,3)(2,6,4)(7,11,9)(8,12,10)(13,15,17)(14,16,18)(19,21,23)(20,22,24)(25,29,27)(26,30,28)(31,35,33)(32,36,34)(37,39,41)(38,40,42)(43,45,47)(44,46,48), (1,23)(2,24)(3,19)(4,20)(5,21)(6,22)(7,13)(8,14)(9,15)(10,16)(11,17)(12,18)(25,43)(26,44)(27,45)(28,46)(29,47)(30,48)(31,37)(32,38)(33,39)(34,40)(35,41)(36,42), (1,3,5)(2,4,6)(7,9,11)(8,10,12)(13,15,17)(14,16,18)(19,21,23)(20,22,24)(25,29,27)(26,30,28)(31,35,33)(32,36,34)(37,41,39)(38,42,40)(43,47,45)(44,48,46), (1,32)(2,33)(3,34)(4,35)(5,36)(6,31)(7,28)(8,29)(9,30)(10,25)(11,26)(12,27)(13,46)(14,47)(15,48)(16,43)(17,44)(18,45)(19,40)(20,41)(21,42)(22,37)(23,38)(24,39) );
G=PermutationGroup([[(1,11),(2,12),(3,7),(4,8),(5,9),(6,10),(13,19),(14,20),(15,21),(16,22),(17,23),(18,24),(25,31),(26,32),(27,33),(28,34),(29,35),(30,36),(37,43),(38,44),(39,45),(40,46),(41,47),(42,48)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,5,3),(2,6,4),(7,11,9),(8,12,10),(13,15,17),(14,16,18),(19,21,23),(20,22,24),(25,29,27),(26,30,28),(31,35,33),(32,36,34),(37,39,41),(38,40,42),(43,45,47),(44,46,48)], [(1,23),(2,24),(3,19),(4,20),(5,21),(6,22),(7,13),(8,14),(9,15),(10,16),(11,17),(12,18),(25,43),(26,44),(27,45),(28,46),(29,47),(30,48),(31,37),(32,38),(33,39),(34,40),(35,41),(36,42)], [(1,3,5),(2,4,6),(7,9,11),(8,10,12),(13,15,17),(14,16,18),(19,21,23),(20,22,24),(25,29,27),(26,30,28),(31,35,33),(32,36,34),(37,41,39),(38,42,40),(43,47,45),(44,48,46)], [(1,32),(2,33),(3,34),(4,35),(5,36),(6,31),(7,28),(8,29),(9,30),(10,25),(11,26),(12,27),(13,46),(14,47),(15,48),(16,43),(17,44),(18,45),(19,40),(20,41),(21,42),(22,37),(23,38),(24,39)]])
108 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2K | 2L | 2M | 2N | 2O | 3A | 3B | 3C | ··· | 3H | 3I | 3J | 3K | 6A | ··· | 6F | 6G | ··· | 6X | 6Y | ··· | 6AN | 6AO | ··· | 6AW | 6AX | ··· | 6BU | 6BV | ··· | 6CC |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | ··· | 3 | 3 | 3 | 3 | 6 | ··· | 6 | 6 | ··· | 6 | 6 | ··· | 6 | 6 | ··· | 6 | 6 | ··· | 6 | 6 | ··· | 6 |
size | 1 | 1 | 1 | 1 | 3 | ··· | 3 | 9 | 9 | 9 | 9 | 1 | 1 | 2 | ··· | 2 | 4 | 4 | 4 | 1 | ··· | 1 | 2 | ··· | 2 | 3 | ··· | 3 | 4 | ··· | 4 | 6 | ··· | 6 | 9 | ··· | 9 |
108 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | |||||||||
image | C1 | C2 | C2 | C2 | C3 | C6 | C6 | C6 | S3 | D6 | D6 | C3×S3 | S3×C6 | S3×C6 | S32 | C2×S32 | C3×S32 | S32×C6 |
kernel | S32×C2×C6 | S32×C6 | S3×C62 | C2×C6×C3⋊S3 | C22×S32 | C2×S32 | S3×C2×C6 | C22×C3⋊S3 | S3×C2×C6 | S3×C6 | C62 | C22×S3 | D6 | C2×C6 | C2×C6 | C6 | C22 | C2 |
# reps | 1 | 12 | 2 | 1 | 2 | 24 | 4 | 2 | 2 | 12 | 2 | 4 | 24 | 4 | 1 | 3 | 2 | 6 |
Matrix representation of S32×C2×C6 ►in GL6(𝔽7)
6 | 0 | 0 | 0 | 0 | 0 |
0 | 6 | 0 | 0 | 0 | 0 |
0 | 0 | 6 | 0 | 0 | 0 |
0 | 0 | 0 | 6 | 0 | 0 |
0 | 0 | 0 | 0 | 6 | 0 |
0 | 0 | 0 | 0 | 0 | 6 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 0 | 0 | 0 |
0 | 0 | 0 | 3 | 0 | 0 |
0 | 0 | 0 | 0 | 6 | 0 |
0 | 0 | 0 | 0 | 0 | 6 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 6 | 1 |
0 | 0 | 0 | 0 | 6 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 6 | 0 | 0 | 0 |
0 | 0 | 0 | 6 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 6 |
0 | 0 | 0 | 0 | 6 | 0 |
6 | 1 | 0 | 0 | 0 | 0 |
6 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 6 | 1 | 0 | 0 |
0 | 0 | 6 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 6 | 0 | 0 | 0 | 0 |
6 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 6 | 0 | 0 |
0 | 0 | 6 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 6 | 0 |
0 | 0 | 0 | 0 | 0 | 6 |
G:=sub<GL(6,GF(7))| [6,0,0,0,0,0,0,6,0,0,0,0,0,0,6,0,0,0,0,0,0,6,0,0,0,0,0,0,6,0,0,0,0,0,0,6],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,6,0,0,0,0,0,0,6],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,6,6,0,0,0,0,1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,6,0,0,0,0,0,0,6,0,0,0,0,0,0,0,6,0,0,0,0,6,0],[6,6,0,0,0,0,1,0,0,0,0,0,0,0,6,6,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,6,0,0,0,0,6,0,0,0,0,0,0,0,0,6,0,0,0,0,6,0,0,0,0,0,0,0,6,0,0,0,0,0,0,6] >;
S32×C2×C6 in GAP, Magma, Sage, TeX
S_3^2\times C_2\times C_6
% in TeX
G:=Group("S3^2xC2xC6");
// GroupNames label
G:=SmallGroup(432,767);
// by ID
G=gap.SmallGroup(432,767);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,2028,14118]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^6=c^3=d^2=e^3=f^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,d*c*d=c^-1,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f=e^-1>;
// generators/relations